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Abstract 
Salt marshes are hotspots of nutrient processing en route to sensitive coastal environments. 
While our understanding of these systems has improved over the years, we still have limited 
knowledge of the spatiotemporal variability of critical biogeochemical drivers within salt 
marshes. Sea-level rise will continue to force change on salt marsh functioning, highlighting the 
urgency of filling this knowledge gap. Our study was conducted in a central California estuary 
experiencing extensive marsh drowning and relative sea-level rise, making it a model system for 
such an investigation. Here we instrumented three marsh positions subjected to different degrees 
of tidal inundation (6.7%, 8.9%, and 11.2% of the time for the upper, middle, and lower marsh 
positions, respectively), providing locations with varied biogeochemical characteristics and 
hydrological interactions at the site. We continuously monitored redox potential (Eh) at depths of 
0.1, 0.3, and 0.5 m, subsurface water levels (WL), and temperature at 0.7 m depth at each marsh 
position. To understand how drivers of subsurface biogeochemical processes fluctuate across 
tidal cycles, we used wavelet analyses to explain the interactions between Eh and WL. We found 
that tidal forcing significantly affects key drivers of biogeochemical processes by imparting 
controls on Eh variability, likely driving subsurface hydro-biogeochemistry of the salt marsh. 
Wavelet coherence showed that the Eh-WL relationship is non-linear, and their lead-lag 
relationship is variable. We found that precipitation events perturb Eh at depth over timescales of 
hours, even though WL show relatively minimal change during events. This work highlights the 
importance of high frequency in situ measurements, such as Eh, to help explain factors that 
govern subsurface biogeochemistry and hydrological processes in salt marshes. 
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1- Introduction 
Coastal wetlands are dynamic hydrologic systems where terrestrial groundwater, 

terrestrial surface water, and seawater mix. These systems play an important role in global 
biogeochemical cycles, promoting both carbon storage and nitrogen removal, in part due to the 
saturated conditions resulting from frequent inundation (Valiela and Cole, 2002; Giblin et al., 
2013; Reading et al., 2017). Despite the importance of the dynamic hydrology in marshes, the bi-
directional hydrologic interaction between terrestrial and marine sources is poorly understood. 

Currently, one of the biggest impediments to developing robust water quality knowledge 
in coastal wetlands is an incomplete understanding of short-time dynamics and a lack of 
sampling at timescales over which nutrients are removed, retained, and transported. A first step 
towards improving this understanding is to determine the time scales at which surface-subsurface 
hydrologic interactions occur in salt marshes, as hydrologic forcing is likely an important driver 
of nutrient cycling and overall biogeochemistry (Guimond et al., 2020b; Guimond and 
Tamborski, 2021). Documenting the current temporal variability of these interactions and 
associated nutrient concentrations will further aid in predicting future conditions in these 
dynamic coastal systems under a changing climate (Crotty et al., 2020; Buffington et al., 2021).  

Available nutrients and other biogeochemical parameters in salt marshes are usually 
limited to synoptic, irregular sampling, or long-term but coarse resolution such as monthly time 
series (Reading et al., 2017). Further, hydrologic forcing like storms and tidal inundation, which 
drive biogeochemical parameters, are short-lived, episodic events that may be missed by coarse 
resolution sampling. Although recent efforts have focused on measuring nutrient concentrations 
at high temporal resolution using sensors (Birgand et al., 2016; Messer et al., 2019; Liu et al., 
2020), these remain uncommon due to the difficulty and high costs associated with collecting 
these datasets. A promising solution to studying rapid temporal hydrological and biogeochemical 
variations in salt marshes is to use continuous in situ redox potential (Eh) measurements. Eh 
describes the energetic favorability of a reaction and indicates the dominant geochemical 
conditions or potential for carbon loss via oxidation. For example, high Eh values are indicative 
of aerobic or oxygenated conditions. In situ Eh measurements are comparatively easy and cheap 
to collect (Wallace et al., 2019; Guimond et al., 2020a), and using several probes can help 
capture the extensive spatial variability in salt marsh systems with respect to surface-subsurface 
hydrologic interactions. 

Eh variability in salt marshes has been linked to sediment characteristics, temperature, 
and hydrologic forcing (Vorenhout et al., 2004), but hydrology has been shown to be the most 
significant control on Eh as it is related to oxygen availability (Ensign et al., 2008). This is 
because surface waters (or waters in contact with the atmosphere) have relatively high dissolved 
oxygen (DO) levels compared to subsurface water. DO is an important indicator of water 
pollution as it is critical for aerobic respiration (Boyd, 2000). Low DO levels are commonly 
found in wetlands as they are subjected to frequent submersion and contain abundant 
decomposing organic material (Hammer and Bastian, 1989; Steinmuller and Chambers, 2019; 
Orduña-Gaytán et al., 2022). Further, previous work has shown that Eh can be an indicator of 
hydrological processes. Eh has been used to represent localized advective oxygen transport in 
forested wetlands as high Eh represents oxygen-rich flow paths (Lahiri and Davidson, 2020). 
Three-dimensional monitoring of Eh showed that high Eh conditions persist along high-
permeability preferential flow paths where oxygenated surface water can easily flow in a shallow 
riparian aquifer (Wallace and Soltanian, 2021). Additionally, tidal inundation in coastal 



 

 

            
       

             
             

    
         

              
                

         
               

    
         

      
            

           
             

       
              

         
         

           
              

          
        

            
      

     
            

  
         

 
              

  
 

             
            

              
           

            
           

           
           
        

     

environments were observed to have a strong relationship with denitrification rates and 
consequently Eh variations (Ensign et al., 2008). Therefore, combining high-resolution in situ Eh 
measurements with inundation extent can be used to evaluate the frequency at which 
biogeochemical processes occur and the timescale at which pore water and subsurface water 
interact in these salt marsh systems. 

Because biogeochemical processes in salt marsh pore water are complex, nonlinear, and 
rapid, changes to measured Eh can simultaneously signal the influence of multiple drivers, such 
as water level. Wavelet analysis has been shown to be useful for carrying out this timescale 
analysis of water chemistry parameters (Kumar and Foufoula-Georgiou, 1997; Arora et al., 
2016). Wavelet transform is used to decompose a time series signal into time and frequency 
domains simultaneously (Foufoula-Georgiou and Kumar, 1994; Torrence and Compo, 1998). 
Because of this capability of time-frequency localization, wavelet analyses can determine 
discontinuities, seasonal trends, and long-term patterns in the time series (Daubechies, 1992). For 
example, wavelet analysis has been used with diverse hydrologic parameters to study runoff 
generation in response to timing and magnitude of precipitation (Kantelhardt et al., 2003; Partal, 
2012). Wavelet transforms of temperature were also used to identify hotspots of submarine 
groundwater discharge (Henderson et al., 2008). Moreover, this method has been used to 
understand redox dynamics and solute concentrations in a diversity of settings, from a municipal 
landfill site to a uranium-contaminated Department of Energy field site (Martínez and Gilabert, 
2009; Arora et al., 2013, 2016). In coastal environments, wavelet transform has been applied to 
periodic water quality measurements to assess the area’s environmental health over several years 
(Venkatesh et al., 2021). In addition, wavelets were used on continuous Eh data in a tidal river to 
assess hydrologic forcing on biogeochemistry over different timescales (Wallace et al., 2019). 

Given this technique's strengths and applicability, we use wavelet transform of 
continuous Eh and shallow subsurface water level measurements. To advance understanding of 
the spatiotemporal variability of hydrological and biogeochemical processes in coastal systems, 
we address the following questions: 

1- Is there spatiotemporal variability at intra/intertidal scales in salt marsh subsurface 
hydrology and biogeochemistry? 
2- What is the role of seasonal climatic factors, such as precipitation, for salt marsh 
biogeochemistry? 
3- What are the drivers of redox conditions and their role in subsurface hydrology? 

2- Methods 
2.1 Site Description 
This study was conducted at the Elkhorn Slough National Estuarine Research Reserve in 

Monterey, California (Figure 1A). The Mediterranean climate of Elkhorn Slough has pronounced 
wet/dry seasonal dynamics, which provide an ideal setting to understand the diel and seasonal 
variations in climatic forcing that impact subsurface inundation and biogeochemical conditions. 
During this study (Feb 2020-March 2021), air temperature varied between 0.3 oC and 35.4 oC, 
while water temperature ranged between 10.7 oC and 19.1 oC. Water levels were also variable, 
ranging between 0.57 m above the ground surface (during high tides, 2.17 m amsl) and 0.24 m 
below the ground surface (1.35 m amsl), reflecting the daily tidal inundations. Water levels 
during the study period had a mean, median, and standard deviation of 1.58 m amsl, 1.58 m 
amsl, and 0.09 m amsl, respectively. Total precipitation over the study period totaled 396.8 mm. 



 

 

            
       

          
                  

         
     

            
          

           
           

        
          

          
         

              
                

       
            

          
            

         
            

             
               

          
              

             
   

            
                  
           

        
           

           
             

         
            

             
                   
           

          
             

               
 
 
 

Our work focused on a 25 m experimental transect in an emergent wetland (Figure 1A, 
black star). The site was delineated into upper, middle, and lower marsh positions through 
elevation surveys and inundation extents (supporting information S1), with an elevation 
difference of 0.24 m over a 24 m profile (Figure 1D). The elevations above mean sea level of 
each marsh position are 1.79 m, 1.65 m, and 1.55 m for the upper, middle, and lower marsh, 
respectively. These elevations are inundated 6.7 %, 8.9 %, and 11.2 % of the time, respectively, 
based on water level data collected at the site between February 2019 and February 2021. These 
wetland positions coincide with previous delineations of salt marshes across the Elkhorn Slough 
estuary based on vegetation coverage by elevation (Woolfolk and Labadie, 2012), and thus, are 
representative of the estuary. Native pickleweed (Salicornia pacifica) dominates the marsh area 
(Van Dyke and Wasson, 2005), underlain by partially decomposed organic soils. For this study, 
we focus on temporal variations in Eh from these three locations that have distinct inundation 
regimes, vegetation activity/coverage, and micro-topography and that are representative of 
common/dominant landscape positions found across emergent wetlands at Elkhorn Slough. 

We analyzed soil bulk density at depth in each marsh position at 0.05 m intervals (Figure 
1B). The density measurements showed an increase in density from the surface down to 30 cm 
depth, where the bulk density was highest (Figure 1D). From 30 cm depth down to 50 cm, the 
bulk density of the soil decreased to values similar to the surface. Bulk density decreased from 
the upper marsh to the lower marsh position (Figure 1D). 

We developed a network of co-located observation wells at each marsh position to study 
water fluctuations across the site (Figure 1D). We installed the wells to a depth of 0.7 m by 
pushing the PVC pipe directly into the ground to minimize gaps around the pipe, which could 
cause artificial water movement vertically along the well's annulus. The wells were screened 
from 0.05 m below the surface to the bottom of the well and water level and temperature were 
recorded with Solinst pressure transducer loggers (Ontario, Canada) at 5-minute intervals. Air 
pressure was also measured in the transect at 5-minute intervals to barometrically correct the 
water pressure measurements. For simplicity, the water level and temperature were averaged at 
hourly intervals. 

We installed Eh probes (Paleo Terra, Amsterdam, Netherlands) next to each observation 
well (~1 m apart) to capture the range of Eh fluctuations over tidal and seasonal cycles and use 
them to indicate the possible dominant biogeochemical processes occurring at different time 
scales. The Eh probes consist of fiberglass-epoxy tubes embedded with an array of 3 platinum 
electrodes and a reference electrode filled with a potassium chloride solution used as a standard 
for the measurements (Figure 1C). Eh was measured at 0.1, 03, and 0.5 m depths below the 
ground surface (Figure 1D). Measurements were recorded at 1 min intervals between March 1st, 
2020 and February 26th, 2021. We calculated the variance over the course of the study period for 
the Eh time series to control for measurement drifts. Similar to other data, these time series were 
also averaged to hourly intervals. Eh values were not corrected for pH. In addition, we installed a 
deep piezometer at 3.5 m below the surface in an upland location (in the same profile but ~8 m 
from the salt marsh, Figure 1B), with no influence from the daily tides. The piezometer was 
completed with a 0.15 m screen at the bottom. We continuously measured water level in this 
piezometer at 5 minute intervals to monitor fluctuations in the regional terrestrial groundwater 
level and evaluate the potential for fresh subsurface water to move laterally towards the salt 
marsh. 

https://docs.google.com/document/d/10mVjz7WOCzrfv5lWKTUcywguY0hvifaLH9p-vHMisoc/edit


 

 

 
 

                 
            

              
      

         
        

         
        

           
          

          
         
 

             
         

            
        

            
          

  
          

        
         

        
                   

 
     

          
           

                 
             

            
           

       
              

          
              

              
             

               
           

         

2.2 Ancillary Data 

Eh is related to the concentration of different redox pairs in the soil, and oxygen is the 
first acceptor that plays a critical role in Eh variability (Vorenhout et al., 2004). Although 
oxygen is introduced into the soil through diffusion and radial oxygen loss in the rhizosphere 
(Adema and Grootjans, 2003)(Koop-Jakobsen and Wenzhöfer, 2015). Thus, we expected that 
tidal processes (described above) and weather conditions would be the dominant drivers of Eh in 
the soil.  To account for weather-driven oxygen inputs, we included hourly meteorological data, 
obtained from the Elkhorn Slough Meteorological Station (Figure 1A) in our study. The station 
is managed and maintained by the National Estuarine Research Reserve System (NERR, 2021). 
Our analyses used relative humidity, barometric pressure, precipitation, wind speed, total 
photosynthetically active radiation, and air temperature. These parameters associated with 
weather conditions have been observed to explain Eh variability in non-tidal inundated systems, 
mainly a paddy field (Minamikawa and Sakai, 2007) and also in waterlogged peats (Haavisto, 
1974). 

To further study the role of vegetation on Eh, we included hourly potential 
evapotranspiration (ET). ET was obtained from the California Irrigation Management 
Information System (CIMIS), which is maintained by the California Department of Water 
Resources (DWR). ET is estimated using the Penman-Monteith equation (Allen et al., 1998). 
DWR manages a station within 5 km of our experimental transect (Station 129; 36.902779, -
121.74193). CIMIS produces estimates of reference ET based on hydroclimatic data measured at 
their stations. 

Monthly vegetation surveys were conducted across the experimental transect between 
October 2020 and September 2021. We used these surveys as a proxy to explore the potential 
controls of plant productivity on Eh. As mentioned above, pickleweed is the predominant marsh 
vegetation along our transect. Measurements of pickleweed canopy height, percent live cover, 
and percent total cover were made over two replicate 0.5 m by 0.5 m plots at each marsh position 
(n=6). 

Considering that animal burrows directly affect salt marsh production, hydrology, and 
biogeochemistry (Crotty et al., 2020; Guimond et al., 2020a), we used monthly surveys of crab 
activity between October 2013 and August 2018 in Elkhorn Slough (Beheshti et al., 2021) as a 
proxy for crab activity in our study. The crab activity study was conducted across the whole 
estuary and not limited to our transect. Further, crab counts were performed monthly. Therefore, 
these data were considered as a proxy for seasonal crab activity. Pachygrapsus crassipes is the 
dominant marsh crab in Elkhorn Slough (Beheshti et al., 2022), with burrow densities often over 
200 per m2 in lower marsh positions (Beheshti et al., 2022). Additionally, burrowing by P. 
crassipes has been shown to have a significant negative effect on bulk density and belowground 
biomass (Beheshti et al., 2022). Evidence from a concurrent study showed that in the marsh 
interior, burrowing by P. crassipes hastens marsh recovery, likely due to improved drainage that 
ameliorate stressors associated with ponding, such as anoxia or sulfide toxicity (Beheshti et al. 
2022). Total catch per unit effort (i.e., four pit-fall traps surveyed per 2 m by 1 m plot of marsh) 
were used to evaluate seasonal changes in crab activity and study their relationship with seasonal 
changes in Eh. Trapping data was conducted along the marsh edge of tidal creeks (n=5) that span 
from the mid to upper reaches of the estuary (Beheshti et al., 2022). 



 

 

  
      

         
            

          
             

          
           

          
              

             
      

            
          

           
           

               
       

             
        

         
             

              
             

            
              
       

          
          

 
 

              
          

         
    

 
  

            
          

          
          

     
          

            

3- Methodology 
Redox reactions often show significant spatiotemporal variability (Vorenhout et al., 

2004, 2011; Guimond et al., 2020a). High frequency Eh measurements can explain factors that 
govern subsurface biogeochemistry and hydrological processes in salt marshes. The use of 
principal component analysis, correlations, or other statistical techniques to examine 
biogeochemical data sets cannot always recognize the processes driving this variability as they 
lack the ability to incorporate temporal changes (Nezlin et al., 2009). 

In coastal systems affected by sea-level rise, there is a growing need to constrain 
biogeochemical processes to predict future scenarios (Ward et al., 2020). Continuous wavelet 
transform (CWT) is a promising tool for timescale analysis of water quality and hydrodynamics. 
CWT has been used to explain variabilities in water quality in coastal estuaries (Venkatesh et al., 
2021). However, Venkatesh et al. (2021) used monthly samples of water quality, which allowed 
them to explain long-term variabilities, such as processes driving annual changes. The short-term 
variability of hydrological and biogeochemical processes, at time-scales over which nutrients are 
transformed, has been less studied. Recently, (Regier et al., 2021) used wavelet coherence on 
sub-hourly water level and salinity measurements to understand hydrologic connectivity between 
tidal creeks and floodplains in coastal systems. They found temporal variation in the lateral and 
vertical connectivity between the two, with neap tides controlling lateral connectivity, 
particularly during the dry season, and vertical connectivity dominated during spring tides. Our 
study uses a similar high-frequency measurement. However, in addition to improving our 
understanding of the hydrologic functioning of the shallow subsurface in the salt marsh, we 
linked the hydrologic processes to short-term variability in Eh. Here we explain variability in Eh, 
a key driver of biogeochemical processes, at time scales that can resolve the effects of tidal 
forcing in salt marsh subsurface hydrology and geochemistry. This application of CWT is 
significant as it can help identify potential control points, hot spots, and hot moments in marsh 
nutrient transformations. Therefore, the aim of the wavelet analyses was to 1) extract the 
complex linkages among biogeochemical drivers (e.g., Eh) and other environmental factors (e.g., 
subsurface hydrology); and 2) identify the temporal scales at which they exert dominant control 
using CWT, which has been found to be a powerful analytical tool (Alexander et al., 2020). 

3.1 Wavelet Analysis 
As suggested above, we used wavelet analysis to analyze the measured Eh patterns and 

identify dominant scales of variability across the three studied marsh positions. In particular, we 
used multilevel decomposition to understand the hydrologic processes dictating patterns of 
biogeochemical drivers at different timescales. 

3.1.1 Time-frequency processing 
Wavelet transform is one of the most commonly used time-frequency analysis techniques 

for studying multiscale, nonstationary processes over spatial and temporal scales (Addison, 
2005; Beecham and Chowdhury, 2010). CWT is obtained by decomposing the data D(t) with a 
wavelet function 𝜓𝜓(t) and creating wavelet coefficients W that designate the relationship among 
the wavelet function and the data: 

∞ ∗𝑊𝑊𝐷𝐷 (𝑎𝑎, 𝑏𝑏) = ∫ 𝛹𝛹𝑎𝑎 ,𝑏𝑏 (𝑡𝑡)𝐷𝐷(𝑡𝑡)𝑑𝑑𝑡𝑡 (1) −∞ 
where t is time, * is the complex conjugate of the wavelet function, illustrated by: 

https://www.zotero.org/google-docs/?fd6g7P
https://www.zotero.org/google-docs/?fd6g7P
https://www.zotero.org/google-docs/?fd6g7P
https://www.zotero.org/google-docs/?PgbGUg
https://www.zotero.org/google-docs/?PgbGUg
https://www.zotero.org/google-docs/?PgbGUg
https://www.zotero.org/google-docs/?PgbGUg
https://www.zotero.org/google-docs/?im7cY0
https://www.zotero.org/google-docs/?im7cY0
https://www.zotero.org/google-docs/?im7cY0


 

 

        
             

           
           

          
 

   
   
       

 
              

            
            
             

             
       

 
  
         

  
        

         
           
             

 
          

                
              

         
              

          
             

            
      

         
          

             
         
               

       

          

𝟏𝟏 𝜳𝜳(𝒕𝒕−𝒃𝒃 𝜳𝜳𝒂𝒂,𝒃𝒃 (𝒕𝒕) = ), 𝒂𝒂 > 𝟎𝟎, −∞ < 𝒃𝒃 < ∞ (2) 
√𝒂𝒂 𝒂𝒂 

where a is the scale parameter that determines the dilation or contraction, and b is the 
shift parameter that dictates the location of the wavelet. The flexibility of the wavelet to be 
stretched and translated in both time and frequency domains helps identify patterns across 
different time scales (Kumar and Foufoula-Georgiou, 1997). The wavelet must satisfy three 
central properties: 

∞1- zero mean, ∫ 𝛹𝛹(𝑡𝑡)𝑑𝑑𝑡𝑡 = 0;−∞
∞2- unit energy, ∫ 𝛹𝛹2(𝑡𝑡)𝑑𝑑𝑡𝑡 =1; −∞ 

3- conservation of energy during transformation (Daubechies, 1992). 

Several wavelet functions have been described in the literature. Here, we used the Morlet 
wavelet to derive the dominant frequencies from the Eh time series data. The Morlet wavelet is 
suitable for feature extraction because it is well localized in space and time (Grinsted et al., 
2004), and it has been used in similar datasets (Arora et al., 2013; Wallace et al., 2019; 
Venkatesh et al., 2021). This wavelet has complex and real elements and facilitates identifying 
and fine-tuning the significant frequencies (Hariprasath and Mohan, 2008). 

3.1.2 Local and Global Wavelet 
The modulus of the wavelet coefficient is applied to produce a continuous-time power 

spectrum 𝑝𝑝𝐷𝐷 (𝑎𝑎, 𝑏𝑏)described as: 
𝑝𝑝𝐷𝐷 (𝑎𝑎, 𝑏𝑏) = 𝑊𝑊𝐷𝐷 (𝑎𝑎, 𝑏𝑏)𝑊𝑊𝐷𝐷

∗(𝑎𝑎, 𝑏𝑏) = |𝑊𝑊𝐷𝐷 (𝑎𝑎, 𝑏𝑏)|2 (3) 
This wavelet power spectrum is helpful as it produces the time-series variance in the 

frequency and time domains (Guan et al., 2011). The global wavelet can be obtained by 
calculating the mean of the local power spectrum along the time axis (Torrence and Compo, 
1998): 

1 𝑁𝑁−1 𝑊𝑊2(𝑎𝑎, 𝑏𝑏) = ∑ |𝑊𝑊𝐷𝐷 (𝑎𝑎, 𝑏𝑏)|2 (4) 𝑛𝑛=0 𝑁𝑁 
where N is the length of the time-series. We calculated a 95% confidence level for the 

global wavelet spectrum and the significance interval of the contours in the local wavelet, with a 
significance testing on the background spectrum. Following (Torrence and Compo, 1998), the 
distribution of the local wavelet at each time t and scale a is given as: 

|𝑊𝑊𝐷𝐷 (𝑎𝑎,𝑏𝑏)|2 ⇒ 1 2𝑃𝑃𝑘𝑘𝜒𝜒2 (5) 
𝜎𝜎2 2 

In (5), 𝜒𝜒2is the chi-square value obtained for the 95% confidence level, 𝜎𝜎 2 is the 
variance, and Pk is the mean spectrum at the Fourier frequency k that corresponds to a. We used 
a red-noise background spectrum, which is obtained as (Torrence and Compo, 1998): 

1−𝛼𝛼2 

𝑃𝑃𝑘𝑘 = (6) 
1+𝛼𝛼2 −2𝛼𝛼𝛼𝛼𝛼𝛼𝛼𝛼 (2𝜋𝜋𝑘𝑘 /𝑁𝑁) 

where Pk is the background spectrum for red-noise, k (= 0 … N/2) is the frequency index, 
and 𝛼𝛼 is an assumed lag-1 autocorrelation. A 95% significance level for the global wavelet was 
also calculated using a red-noise background spectrum. The spectrum of the global wavelet can 
also be fitted by a chi-square distribution of the form 𝜒𝜒𝑣𝑣

2 

, where v (the degree of freedom) is 
𝑣𝑣 

calculated as (Torrence and Compo, 1998): 

2�1 + (𝑡𝑡𝑎𝑎𝑣𝑣𝑎𝑎 𝛿𝛿𝑡𝑡 𝑣𝑣 = ) (7) 
𝛾𝛾𝑎𝑎 



 

 

              
                

            
         

                
             

 
 

         
               
        

        
        

   
       

            
           

     
        

                 
                

           
         

                 
        

    
 

  
         

            
        

       
          

            
             

          
            

         
            

       
     

           
 

          
             

            

In (7), tavg is the number of points averaged over, 𝛾𝛾 is the empirically calculated 
decorrelation factor for the mean power across the time axis, and 𝛿𝛿𝑡𝑡 is the sampling frequency. 
We used the R software (R Core Team, 2019) package Biwavelet (Gouhier et al., 2021) for 
calculating the wavelet spectrums and the confidence intervals. We represented the edge effects 
of time-frequency (Guan et al., 2011) with a cone of influence, illustrated by the shaded region in 
the wavelet power spectrum (e.g., Figure 3), and omitted it from the analysis. 

3.1.3 Wavelet Coherence 
Wavelet coherence analysis can explain the relationship of two time series in the time-

frequency domain. The correlation between the wavelet power of two variables (D1, D2) can be 
quantified through wavelet coherence analysis (Grinsted et al., 2004): 

∗𝑝𝑝𝐷𝐷1,𝐷𝐷2 (𝑎𝑎, 𝑏𝑏) = 𝑊𝑊𝐷𝐷1 (𝑎𝑎, 𝑏𝑏)𝑊𝑊𝐷𝐷2 (𝑎𝑎, 𝑏𝑏) (8) 
The wavelet coherence may be decomposed into modulus pD1,D2(a,b) and phase 

𝛷𝛷𝐷𝐷1 ,𝐷𝐷2 (𝑎𝑎, 𝑏𝑏) as (Maraun and Kurths, 2004): 
𝑝𝑝𝐷𝐷1,𝐷𝐷2 (𝑎𝑎, 𝑏𝑏) = �𝑝𝑝𝐷𝐷1,𝐷𝐷2(𝑎𝑎, 𝑏𝑏)�𝑒𝑒𝑖𝑖𝑖𝑖𝐷𝐷1,𝐷𝐷2(𝑎𝑎,𝑏𝑏) (9) 
In (9), the modulus quantifies the power and the phase describes the lag in time between 

D1 and D2. We used wavelet coherence to study how Eh and other non-stationary variables, 
specifically subsurface water level, varied in time. 

We used arrows to represent the lead-lag relationship between Eh and subsurface water 
level. Arrows pointing to the left symbolize that the two time series are anti-phase (there is a 
difference of phase between the two signals of 𝜋𝜋 (or -𝜋𝜋), that is to say, the two waves have 
opposite signs and for example a high in subsurface water level corresponds to a low in Eh). 
Arrows pointing towards the right indicate that the time series are in phase (both series move in 
the same direction). When the arrows point down, the water level is leading (e.g., a high in 
subsurface water level occurs earlier than a high in Eh). When the arrows point upwards, the Eh 
time series leads the water level. 

3.1.4 Multilevel Decomposition of Redox potential 
The multilevel decomposition (MLD) allows decomposition of a time series into a 

number of frequency bands at discrete levels of time scales. At the first step, the time series data 
is split into two, yielding the high-pass bandwidth (i.e., detailed components), and the low-pass 
bandwidth (i.e., approximate components; (Quiroz et al., 2011). Each low-pass bandwidth can 
continue to be decomposed to achieve the next level of hierarchy. This methodology, therefore, 
allows removing the noise (detailed components) and recovering the data's smoothed trend 
(approximate components) for each level. The decomposition levels are based upon the sampling 
frequency and the total length of the time series (Mallat, 1999). The detailed and approximation 
components are determined by iteratively using a high-pass filter and an associated low-pass 
filter, which requires satisfying orthonormality (Labat et al., 2004). A wavelet function 𝜓𝜓(𝑡𝑡) 
composes the high-pass filter in the wavelet transform, and its scaling function 𝜙𝜙(𝑡𝑡) determines 
the low-pass filter. The detailed (Dm) and approximation (Am) components at a given 
decomposition level m can be calculated as: 

∞𝐷𝐷𝑚𝑚(𝑡𝑡) = ∑ 𝑊𝑊(𝑚𝑚, 𝑘𝑘)𝜓𝜓𝑚𝑚 ,𝑘𝑘 (𝑡𝑡) (10) 𝑘𝑘 = −∞ 

∞𝐴𝐴𝑚𝑚 (𝑡𝑡) = ∑ 𝑆𝑆(𝑚𝑚, 𝑘𝑘)𝜙𝜙𝑚𝑚 ,𝑘𝑘 (𝑡𝑡) (11) 𝑘𝑘 = −∞ 
where S is the scaling coefficient and k is a discrete location index. We used the 

Daubechies 5 (Db5) wavelet and scaling function, which meets the orthogonality requirement. 

https://www.zotero.org/google-docs/?ZVnisD
https://www.zotero.org/google-docs/?ZVnisD
https://www.zotero.org/google-docs/?ZVnisD
https://www.zotero.org/google-docs/?ZVnisD


 

 

        
          

       
         

               
            
          

            
     

 
  

                
            

          
            

           
               

   
        

             
          

           
          

           
          

            
               

          
                  

         
        

           
            

     
         

           
 

        

  
      

             
          

         
        

The approximation and detailed coefficients follow powers of two (i.e., dyadic sampling) to 
capture the natural frequencies of the Eh data set at 2, 4, 8, 16, and 32-hour scales, respectively. 
Although frequencies of interest (e.g., tidal frequencies) would be observed at ~12 and ~24-hour 
scales, these dyadic decomposition levels offer an opportunity to investigate the intertidal cycles 
seen in the salt marsh. We studied the 16 h approximation component variability and its 
relationship with other environmental parameters available for this study (see section 2.2). 
Specifically, we zoomed in around the largest precipitation event of the studied period to 
estimate the effects of precipitation as a driver of Eh. We used the Wavelet Toolbox from 
MatLab (The MathWorks, 2021) to obtain the MLD. 

3.2 Mutual Information 
In order to identify the key factors causing temporal variability in the Eh data, we chose 

to employ mutual information. The mutual information of two random variables quantifies how 
much information is obtained about one variable by observing the other variable. Unlike the 
correlation coefficient, mutual information is not limited to linear dependence (Brunel et al., 
2010; Zhang et al., 2012). Mutual information is more comprehensive and defines how different 
the joint distribution of the two variables (X, Y) is from the product of the marginal distributions 
of X and Y (Shannon and Weaver, 1949): 

𝐼𝐼(𝑋𝑋; 𝑌𝑌) = 𝐷𝐷𝐾𝐾𝐾𝐾(𝑃𝑃(𝑋𝑋,𝑌𝑌)||𝑃𝑃𝑋𝑋 ⊗ 𝑃𝑃𝑌𝑌 ) (12) 
where X and Y are random variables (e.g., Eh, water level) with values in the 𝑋𝑋 × 𝑌𝑌 

space, marginal distributions PX and PY, and join distribution P(X,Y). DKL is the Kullback-Leibler 
divergence (i.e., reactive entropy, (Cover and Thomas, 2006)). In our study, we used mutual 
information analysis between Eh and ET, subsurface water level in each marsh position, 
subsurface water temperature in each marsh position, terrestrial groundwater level, precipitation, 
and the rest of environmental parameters described in section 2.2 

In mutual information, the null hypothesis is that I(X; Y)=0 (i.e., the two signals are 
independent). To test the statistical significance of the analysis, we used an equal variance t-test, 
which is valid for large samples from non-normal distributions and can be used when both data 
sets consist of the same number of samples and it has been used to test the statistical significance 
of mutual information analysis (Sarkar and Pandey, 2020). We used a one-tailed test with 
significance level α = 0.0001, which corresponds to a confidence level of ~99.9%. 

Further, we normalized I(X;Y) to scale the results between 0 (no mutual information) and 
1 (perfect correlation). The normalization uses the entropy H(X) of each individual signal, and 
can be calculated as (Kvålseth, 2017; Zbili and Rama, 2021): 

𝐼𝐼 (𝑋𝑋;𝑌𝑌)𝑁𝑁𝑁𝑁𝐼𝐼(𝑋𝑋; 𝑌𝑌) = (13) 
�𝐻𝐻 (𝑋𝑋)∗𝐻𝐻 (𝑌𝑌) 

And H(X) of the discrete random variable X is calculated from its probability (P(x)) and 
surprise (logP(x)) as:

𝑛𝑛 𝐻𝐻(𝑋𝑋) = − ∑ 𝑃𝑃(𝑥𝑥𝑖𝑖)𝑙𝑙𝑙𝑙𝑙𝑙𝑃𝑃(𝑥𝑥𝑖𝑖) (14) 𝑖𝑖=1 

4- Results 
4.1 Redox potential patterns in the spatiotemporal domain 
There was considerable spatial and temporal variability in Eh across marsh positions and 

with depth at our salt marsh transect (Figure 2, supporting information S2). Furthermore, 
anaerobic conditions (Eh < 250 mV; (Søndergaard, 2009)) dominated the area over the study 
period across all marsh positions. Eh increased significantly with elevation, with median values 



 

 

   
       

          
      

              
             

         
             

             
        

            
       

            
   

 
     

            
               

            
                

            
           

        
           

            
                
          
           
      
          

         
            
      

          
          

         
        

           
              
          
           

              
           

           

of -421 mV, -404 mV, and -377 mV at the lower, middle, and upper marsh positions, 
respectively (Kruskal-Wallis test: H=9699.3, df = 2, p < 0.001). Additionally, median Eh values 
varied significantly between 10 (median = -387 mV), 30 (median = -424 mV), and 50 cm depths 
(median = -407 mV) (Kruskal-Wallis test: H=19639, df = 2, p < 0.001). 

Median Eh was highest at 10 cm and lowest at 30 cm, and this is consistent across the 
entire measurement period (Figure 2). At 10 cm, especially during the wet season (i.e., 
November-January), the oxygen delivery and consumption processes are readily seen in the Eh 
profiles (Figure 2). During this period, we observed the highest range of Eh values. At all marsh 
positions, Eh is relatively lower at 30 cm than at 50 cm, except for the middle marsh, where the 
Eh measurements at 50 cm were consistently lower, suggesting that Eh doesn’t continuously 
decrease with depth but rather is likely related to soil properties, such as bulk density (Figure 2, 
S3). Further, throughout the monitoring period, measurements at the 50 cm depth remained 
somewhat spatially and temporally constant (~ -400 mV), highlighting the lower Eh variability at 
depth in salt marsh sediments. 

4.2 Redox potential patterns in the time-frequency domain 
We studied the temporal variability in Eh as a result of tidal fluctuations using the Morlet 

wavelet (Figure 3). Based on the Morlet wavelet, all marsh positions and depths studied show 
dominant powers at periods of 12 h and 24 h (areas marked with black polygons in the CWT, or 
with powers above the red dashed line in the global wavelet spectrum, which mark the 95% 
confidence level, Figure 3). The significant powers at the 12 and 24 h periods coincide with the 
sub-daily and daily tidal frequencies (Taniguchi, 2000), suggesting a relationship between the 
water level in the salt marsh (i.e., inundation extents) and Eh measurements. 

At 10 cm depth, significant powers at specific tidal frequencies (12 and 24 h periods in 
Figure 3, Table 1) are seasonal; significant powers start in August 2020 and stop during the 
winter months. The significant powers start earlier in the upper and middle marsh than at the 
lower marsh position. In addition to significant powers at (sub)daily tidal cycles, the CWT of the 
10 cm probes showed significant powers at larger periods of ~708 h (29.5 days) and ~355 h (14.8 
days), corresponding with the lunar cycles (Figure 3; (Taniguchi, 2000)). However, significant 
powers at these frequencies are not observed at other depths. 

At 30 cm, Eh measurements showed different patterns in the CWT across marsh 
positions. In the upper marsh position, the CWT shows significant powers at 12 and 24 h periods 
continuously from April through October 2020. The middle marsh position showed significant 
powers for a limited time (predominantly in summer, Figure 3, Table 1), and only the ~24 h 
period is significant in the global wavelet. In the lower marsh position, Eh displayed significant 
powers at tidal frequencies (~12 and ~24 h periods) throughout the studied period (Figure 3). No 
lunar cycle frequencies are observed at this depth. 

The CWT of Eh at 50 cm displayed temporal and spatial variability. In the upper marsh, 
Eh measurements show significant powers at tidal frequencies only during some days in May, 
July and August 2020 (Figure 3). However, in the middle marsh position, significant powers at 
tidal frequencies show a gap between July and August 2020. During that period, the middle 
marsh showed significant powers at frequencies associated with the lunar cycle (Figure 3, Table 
1). The lower marsh position also showed a gap in the significant powers of tidal frequencies, 
however the gap started in June and ended in October 2020. 



 

 

 
 

          
       
       
            

        
                

              
        

          
             

             
            

                  
            

           
    

           
        

        
 

        
                   
                   

         
           

                  
     

           
           

          
          

               
             

   
 

  
         

            
        

          
          
           

              
         

4.3 Controlling Processes 
Based on the mutual information analysis, regional terrestrial groundwater level, 

subsurface water temperature and subsurface water level in the salt marsh share the most 
information with Eh, with normalized mutual information (NMI) of 0.99, 0.98, and 0.97, 
respectively (Figure 4).These parameters are followed by air temperature and total PAR, wth 
NMI of 0.71 and 0.63, respectively (Figure 4). Precipitation and Eh share low mutual 
information, with NMI of 0.03 (i.e., these two time series are somewhat independent). Here, we 
illustrate the results from the mutual information analysis only for the lower marsh position, but 
other marsh positions had similar results (S4). 

The temporal variability of the 16 h approximation coefficients was graphically 
compared with the most significant parameters from the mutual information analysis to identify 
and temporally separate the processes affecting Eh’s dominant frequencies (Figure 5). Here, we 
zoom-in to show data between January 20th and February 10th 2021, corresponding to dates 
around one of the few precipitation events of the 2021 water year in the area (Figure 5). The 
precipitation event totaled 147.6 mm in 3 days with a maximum intensity of 11.2 mm/h. During 
this focal period, Eh and ET were out of phase (Figure 5A). ET ranged between 0 and 0.8 mm/h, 
with a mean, median, and standard deviation of 0.13 mm/h, 0.1 mm/h, and 0.2 mm/d, 
respectively. The maximum daily Eh value occurred at times of minimum ET (at night). 
Subsurface water temperature displayed a relatively low temporal variability, contrasting with air 
temperature values for the site, as would be expected (Figure 5B). 

During the period shown in Figure 5, the lead-lag relationship between subsurface water 
level and Eh is observed to be variable. For example, the maxima in water level and Eh are in 
phase in the first two days, but the two variables are out of phase for the remaining period. The 
regional terrestrial groundwater level varied (i.e., increased) rapidly in response to precipitation 
events (Figure 5B). Over the whole study period, the water table fluctuated between 1.77 m amsl 
(in the dry summer and fall season) and 2.78 m amsl (in the wet winter season, S5), with a mean, 
median, and a standard deviation of 2.23 m amsl, 2.19 m amsl, and 0.30 m amsl, respectively. 
The regional terrestrial groundwater level is generally higher than the subsurface water level in 
the salt marsh. The regional terrestrial groundwater level is only lower than the subsurface water 
level during king tides in very dry periods (S5). 

Note that the detailed components (d1, d3, d3, d4, and d5) represent the “noise” in data at 
each scale and were therefore removed from the analysis. This can be further confirmed from 
Figure 5C where the detailed components are damped during the precipitation event, and 
amplified otherwise. 

4.4 Wavelet Coherence 
Overall, the results of Eh's mutual information and spectral analysis suggest that water 

level (i.e., tidal inundation) is a critical control in the temporal variability of Eh. In order to 
further describe the relationship between water level and Eh in the frequency space, wavelet 
coherence was performed. Here we show the power (modulus) and the phase (angle) for the 
wavelet coherence between water level and Eh at 30 cm in the lower marsh (Figure 6). The 
wavelet coherence for all other water levels and Eh comparisons showed similar behavior (S6). 

Eh and subsurface water levels were significantly coherent at ~12 h and ~24 h periods 
across most of the studied period (power > 0.8 mV2 in Figure 6). The frequency of high powers 

https://docs.google.com/document/d/10mVjz7WOCzrfv5lWKTUcywguY0hvifaLH9p-vHMisoc/edit
https://docs.google.com/document/d/10mVjz7WOCzrfv5lWKTUcywguY0hvifaLH9p-vHMisoc/edit
https://docs.google.com/document/d/10mVjz7WOCzrfv5lWKTUcywguY0hvifaLH9p-vHMisoc/edit
https://docs.google.com/document/d/10mVjz7WOCzrfv5lWKTUcywguY0hvifaLH9p-vHMisoc/edit


 

 

            
           
         

          
            
                  
             

          
                
            

              
            

  
      

           
           

             
          

       
       

         
                

         
                

          
            
            

         
             
          
           

            
   
        

              
          

              
         
               

             
           

               
         
        

 

(blue color in Figure 6) at tidal periods suggests a quasi-periodic relationship between Eh and 
subsurface water level. We also observed significant coherence at lunar cycles (14.8 and 29.5 
days) over some periods, although more sporadic than the significant powers at tidal periods. 

The phase plot (Figure 6) showed that the lead-lag behavior of the Eh and subsurface 
water level signals was not consistent throughout the studied period. The colors (blue) highlight 
when the two signals are in phase. We observed that Eh and water levels were in phase during 
lunar cycles and sporadically at tidal frequencies (shown by a phase of 0 radians, Figure 6). 
During other periods, we observed that the signals were anti-phase (shown by phases of -3 and 
+3 radians, Figure 6) at tidal periods. The arrows indicate that the subsurface water level leads 
Eh at lunar cycles and only at times for tidal periods. Nevertheless, the wavelet coherence 
showed a direct relationship between these two variables at tidal frequencies (12h and 24h), 
suggesting a relative change in the Eh time series across tidal cycles. 

5- Discussion 
5.1 Intertidal processes: Implications for the local hydrology 
Tidal signals were observed in the Eh time series across all depths, suggesting that water 

level fluctuations influence Eh values in the salt marsh sediment. This was confirmed by CWT 
analysis that showed that Eh changed at tidal frequencies (even at depth; Figure 3), implying that 
tidal surface water interacts with pore water during high tide periods, allowing for some degree 
of exchange in water chemistry at these frequencies (12 and 24 h). 

One potential mechanism that may explain rapid water movement through the salt marsh 
is filling of pores during high tides and evapotranspirative loss during low tides (i.e., water 
removed from the salt marsh sediment via ET). However, if this were the only mechanism acting 
in the Eh, we would likely observe strong seasonality in Eh, highlighted during the summer 
growing season, when ET is higher, which we did not see (e.g., Figure 3). Pickleweed, the 
predominant plant in the salt marsh, can have a rooting depth of over 0.5 m (Meinzer, 1927) 

A second potential mechanism that may explain rapid water movement through the 
subsurface involves animal burrows. Animal burrows are abundant in these environments (S7) 
and favor pore water-tidal water exchange (Tait et al., 2016; Taillardat et al., 2019). Tidal water 
circulation through burrows was the ‘engine’ of water and solute exchange in a mangrove-
dominated marsh (Stieglitz et al., 2013). Stieglitz et al. (2013) used Radon and Radium isotopes 
to calculate water balance fluxes, determining that water flushed through animal burrows 
accounted for 20% of the total annual river discharge in a watershed in the Great Barrier Reef, 
northeastern Australia. 

Our observations also agree with Breier et al. (2009), who used Radium isotopes to 
explain the subsurface hydrology in the Elkhorn Slough estuary. They suggested a relatively fast 
turnover between inundation and drainage of tidal zones of subsurface water, though their model 
could not reproduce intertidal changes. Considering that the compressibility of water is very low 
(Fine and Millero, 1973; Osif, 1988), and because the salt marsh is saturated most of the time, 
more water cannot be added to the soil without removing some water (Wong et al., 2009). This 
condition indicates a relatively high hydraulic conductivity and relatively fast circulation of pore 
water through the salt marsh platform. The exchange of this more oxygenated surface tidal water 
with pore water would lead to tidal variations in the Eh time series, highlighting the Eh-
subsurface water level relationship. This process is complex and non-linear, with Eh and 
subsurface water levels displaying periodic changes in their lead-lag relationship (Figure 6). 

https://www.zotero.org/google-docs/?rYfo8W
https://www.zotero.org/google-docs/?ydpU4M
https://www.zotero.org/google-docs/?r69xlv


 

 

     
 
         

              
         

                
      

           
         

              
           
            

             
             

              
       

     
         

                
         

            
          

              
            

           
           

               
           

              
              

          
             
                  
           

              
    

          
              

              
         

     
       

          
           

         
          

5.2 Seasonal processes: Climatic forcing effects on salt marsh hydrology and 
biogeochemistry 

The effect of precipitation in the salt marsh’s subsurface water level was evident during 
our study. Although the tides primarily drive subsurface water level, the salt marsh drains 
between high and low tides (i.e., the water level is below the salt marsh surface, gray dashed line 
in Figure 5B, before the focal rain event). However, the salt marsh platform stays saturated after 
precipitation events, even during low tides, possibly due to the hydrologic forcing of the elevated 
terrestrial groundwater level. This observation suggests that precipitation water, and the 
corresponding increase in the terrestrial groundwater level (Figure 5 B), play a role in 
maintaining the subsurface water level elevated in the salt marsh. This implies that high 
antecedent moisture conditions, interpreted as periods of higher terrestrial groundwater levels, 
reduce the aeration of the salt marsh platform’s top centimeters, unlike periods in which the salt 
marsh drains. This process has important implications for carbon retention as marsh draining 
might enhance carbon loss from the marsh sediments due to increased carbon oxidation 
(Guimond et al., 2020a). On the other hand, aeration of salt marsh sediments enhance pollutant 
removal rates as oxygenation can increase biogeochemical processes, including decomposition 
of excess nutrients (Nivala et al., 2020). 

Seasonally, the influence of different water sources (e.g., precipitation, tidal surface 
water) and antecedent moisture conditions on Eh varied, and the use of MLD helped detect these 
changes (Figure 5). Using the approximation component , we identified changes in the Eh 
behavior during precipitation events. During rainless periods, we observed the effects of tidal 
forcings on the Eh approximated coefficient (Figure 5A). However, the tidal frequency is muted 
during precipitation events, and the Eh signal becomes relatively flat (Figure 5A). We observed 
this phenomenon at all depths and marsh positions studied. This process shows that precipitation 
water, which has a different chemical signature from tidal water, exchanges with the marsh pore 
water relatively fast after the onset of precipitation, and this is registered in the Eh measurements 
(Figure 5A).The effect of precipitation in the Eh record might be explained by increased lateral 
flow of fresh terrestrial groundwater from increased terrestrial groundwater levels during 
precipitation events (Figure 5). Although the study design does not test the specific mechanism 
of precipitation effects on Eh, the lateral flow of fresh groundwater across shallow subsurface 
marsh zones could also be driven by differences in density between fresh groundwater over 
saline marsh water. Additionally, direct, vertical infiltration of precipitation water into the salt 
marsh could be a significant factor. However, at the time scale used in this analysis (one year of 
hourly data), the mutual information cannot detect information that does not occur frequently, 
such as precipitation. More extended time series and coarser frequencies might show the effects 
of precipitation on Eh. 

Seasonal changes in the terrestrial groundwater level and subsurface temperature 
variations at all marsh positions also drive subsurface Eh, as suggested by the mutual 
information analysis (Figure 4). The lateral flow of groundwater and its effect on subsurface 
water levels in salt marshes have been considered in the scientific literature. For example, 
(Menció et al., 2017) used major ions, nutrients and water stable isotopes to study the 
hydrogeological dynamics of a salt marsh, also in a Mediterranean climate in Catalonia, Spain. 
They found that groundwater contributions to the salt marsh were significant, and played an 
important role in controlling water salinity. (Xie et al., 2019) studied the importance of 
precipitation on salt marsh vegetation. They showed that post-dry season precipitation enhanced 
seedling establishment by influencing the suitability of abiotic factors for species niches. At the 



 

 

            
           

       
           

           
                
            

            
  

 
   

         
        

            
         

           
          

          
           

               
          

     
        

               
              

      
      

          
           

           
      
                 

            
            
               

           
            

               
        

          
           

        
         

         
          

          

same time, they found that plant–soil–rainfall interactions were nonlinear and likely controlled 
by tidal inundation. These studies highlight the important role of fresh groundwater-saline tidal 
water exchanges for salt marsh ecosystems. Our analysis shows that these interactions are 
present in our field site and that they influence Eh conditions in the subsurface. 

Notably, the mutual information analysis showed that the terrestrial groundwater level 
and Eh are closely related. This relationship is likely due to similar factors affecting both signals. 
For example, tidal forcing, which is more evident in the Eh time series, but can impart slight 
variations in the terrestrial groundwater in coastal ecosystems (Turner et al., 1997) (Abarca et 
al., 2013). 

5.3 Redox conditions, drivers, and subsurface hydrology 
In our study, anoxic conditions dominated the transect with subtle Eh variations across 

most marsh positions. The redox conditions suggest that denitrification rates in the subsurface 
are substrate limited, with rapid consumption of nitrate occurring when nitrate is available. 
Previous studies at Elkhorn Slough have found that anthropogenic nitrate inputs are removed by 
denitrification in salt marsh sediments (Wankel et al., 2009, 2011). In systems such as Elkhorn 
Slough that receive high loads of anthropogenic inorganic nitrogen (Chapin et al., 2004), this 
reinforces the idea that salt marshes are important modulators of water quality. Furthermore, 
despite strong variability in atmospheric forcing (e.g., precipitation), we observed relatively 
subtle seasonal fluctuations in Eh, suggesting that the capacity of the marsh to rapidly remove 
nutrients delivered from surface water is consistent throughout the year and may exert an impact 
on surface water quality year-round. 

Sediment bulk density likely plays an essential role in controlling Eh variability in the 
sediment profile. Our analysis observed an overall decrease in mean Eh at each marsh position 
with increased soil density (S3). However, the relationship between Eh and bulk density varied 
between marsh positions, perhaps due to several parameters simultaneously influencing Eh (e.g., 
hydrology, climate, biotic processes). The most significant ranges in Eh values were observed 
closest to the sediment-water interface, and also, above the higher density, less permeable layer 
observed at the 30 cm depths across marsh positions (Figure 1D). This high-density layer likely 
reduces vertical oxygen transport during tidal inundations (Haberer et al., 2014), resulting in 
episodic steep vertical redox gradients (Figure 2). 

Marsh elevation is also a likely driver of spatial variability in Eh due to difference in 
inundation extent across the marsh platform. Although the differences in inundation extent 
across the marsh positions are relatively small (S1), we found that the less inundated upper and 
middle marshes were less reducing overall as is evidenced by the higher average Eh values 
(Figure 2). This illustrates the importance of tidal inundation, including the duration of the 
inundation event, for salt marsh biogeochemistry. Specifically, tidal forcing can drive whether 
nitrate is removed or retained by regulating oxygen and substrate delivery to sediments (Zheng et 
al., 2016). Theelevational differences in Eh measured in our study could potentially impact 
marsh function by influencing the dominant microbial metabolic pathways (Falkowski et al., 
2008). Oxygen penetration into anoxic sediments promotes nitrification at relatively short 
timescales (Petersen et al., 1994; Hamersley and Howes, 2005) as an electron acceptor 
stimulating denitrification. However, if sediments are more consistently reduced, such as at the 
low marsh position, sulfide accumulation can inhibit nitrification-denitrification coupling and 
instead promote nitrogen retention through dissimilatory nitrate reduction to ammonium 
(DNRA) (Joye and Hollibaugh, 1995; Murphy et al., 2020). While we did not measure 

https://www.zotero.org/google-docs/?j4ckcQ
https://www.zotero.org/google-docs/?j4ckcQ
https://www.zotero.org/google-docs/?j4ckcQ


 

 

           
          
         

 
           

          
      

               
            

              
           

              
           
      

  
          

             
         

                
          

           
         

             
               

          
 

        
          

              
           

       
       

         
               

           
         

           
               

            
          

      
            

             
              

              

biogeochemical transformations in this study, our finding that Eh differs between marsh 
elevations is particularly significant given that sea level rise will result in more frequent 
inundation of the upper marsh, potentially transforming its functionality to mirror the current 
lower marsh. 

Overall, tidal inundation of the transect seems to be the dominant control on subsurface 
Eh across the salt marsh. Oscillatory tidewater and pore water interact within the marsh 
sediment, likely transporting oxygen and other electron acceptors to depth. Advective transport 
distances across tidal cycles are likely small, though this may depend on season. However, the 
continuing influence of oscillatory tides could heighten solute dispersion, causing a shallow 
vertical redox gradient that shifts somewhat over each tidal cycle (Wallace et al., 2019). The 
corresponding oscillations in Eh vertical gradients across positions have implications for the 
timing of nutrient removal and fluxes to coastal environments in salt marshes. Cyclic inundation 
and draining of pore water due to tidal forcing (or tidal pumping) can attenuate excess nutrients 
and have important water quality implications. 

6- Conclusion and Implications 
Biogeochemical parameters such as nutrients are commonly measured at monthly 

frequencies in coastal estuaries but significant nutrient processing can occur rapidly at much 
shorter time scales (e.g., precipitation events, tidal cycles). This study investigated the variability 
of Eh, a critical driver of biogeochemical processes, at time scales that can explain intertidal and 
intratidal variations. Further, because Eh is linked to moisture conditions, we studied the local 
subsurface hydrology of a salt marsh using continuous, high-frequency water level 
measurements. Our work shows that the subsurface hydrology is likely dynamic with the 
potential for tidal surface water to exchange with subsurface water at intra-tidal time scales (12 
and 24 h periods). This observation highlights the necessity to measure analytes of interest at 
higher frequencies to explain the critical biogeochemical processes dominating coastal 
ecosystems. 

Moreover, our analysis shows that precipitation water mutes the tidal signal observed in 
the Eh time series, indicating that precipitation disturbs subsurface Eh. This result implies a 
relatively fast exchange of precipitation water with pore water in the salt marsh. We hypothesize 
that the presence of crab burrows, which are abundant in these types of environments, allows for 
rapid pore water-surface water exchange at sub-hourly intervals. However, temporal changes in 
the lead-lag relationship between Eh and subsurface water level suggest that the relationship 
between these parameters is not linear, and instead influenced by many interlinked processes, 
such as terrestrial water levels, subsurface water temperature in the salt marsh, plant activity, etc. 

Continuous wavelet transforms revealed that salt marsh subsurface Eh varies significantly 
at frequencies corresponding to lunar cycles (14.8 and 29.5 days). During periods of higher tides, 
the surface water-pore water exchange seems to be accentuated. A future research question 
would focus on studying the biogeochemical impacts of the lunar cycles on coastal systems. 

Continuous measurements of Eh at high resolution over long periods enable understanding 
the variability and instantaneous effects of hydrologic forcing (e.g., precipitation events, tidal 
flooding) in the pore water chemistry of the salt marsh platform. Furthermore, high-resolution 
measurements permit signal analysis in the frequency domain. By implementing techniques like 
those shown here in continuous Eh data sets, subsurface conditions can be further studied by 
analyzing specific frequencies that explain the temporal variability of a time series. For example, 
wavelet analysis can aid in understanding subsurface hydrologic fluctuations as it can show the 
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effects of the tides in the subsurface or highlight the changes in the time series frequency when 
other water sources are present (e.g., precipitation water). Further, wavelet analysis can help 
understand reactive transport of Eh-sensitive solutes (e.g., nitrate), particularly in dynamic 
environments such as coastal estuaries. 

As global climate shifts, factors including sea-level rise will induce changes in marsh 
position functioning and the services they provide. We used a relatively simple and robust 
methodology for evaluating key marsh processes. The methods presented here can assist in 
interpreting coastal processes, which can help with the urgency to predict future scenarios under 
sea-level rise conditions. Further, the application of these techniques have transformative 
influences on our knowledge of coupled hydrological and biogeochemical processes in marsh 
ecosystems. 
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TABLES 
Table 1. Summary of periods (frequencies) at which significant powers in the Eh wavelet occur. 

Significant Periods 

Depth (cm) Lower Marsh Middle Marsh Upper Marsh 

10 1:64 h & > 512 h 12h and 24h (tidal 
frequencies) 

12h and 24h (tidal 
frequencies), 355h and 
708h (lunar cycle) 

30 12h and 24h (tidal 
frequencies) 

24h (daily cycle) 12h and 24h (tidal 
frequencies) 

50 12h and 24h (tidal 
frequencies), 355h and 
708h (lunar cycle) 

12h and 24h (tidal 
frequencies), 355h and 
708h (lunar cycle) 

12h and 24h (tidal 
frequencies) 

FIGURE LEGENDS 

Figure 1. A) Map of Elkhorn Slough with the extent of wetlands outlined in light blue. 
The black star marks the location of the study transect. B) Map view of the experimental transect 
showing the location of the upland monitoring piezometer in relation to the salt marsh transect. 
C) Labeled diagram of the redox probe and reference electrode used for this project. D) 
Illustration of the experimental transect showing the spatial distribution of the redox (Eh) probes 
and observation wells with a contour plot overlay of sediment bulk density across the salt marsh. 
The darker the colors in the contour plot, the greater the bulk density (highest around 30 cm at 
all three marsh positions). 

Figure 2. Redox potential (Eh) contour graphs across the experimental transect. The 
grey, dashed lines at 10, 30 and 50 cm indicate the Eh probe’s depth, the values in between are 
linearly interpolated. Soil bulk density at each marsh position is shown to the right of each 
contour plot. Precipitation time series for the studied period is shown above the Eh profile to 
illustrate the timing of storm events. The time series corresponding to this contour plot can be 
found as supporting information S2. 

https://docs.google.com/document/d/10mVjz7WOCzrfv5lWKTUcywguY0hvifaLH9p-vHMisoc/edit


 

 

          
     

       
         

    
    

     
 

      
   

  
    

 
     

   
   

     
   

     
     

         
  

 
      

  
       

         
         

           
       

          
      

     
 
 
 
 

Figure 3. Continuous wavelet spectrum and global wavelet spectrum of Eh time series 
between March 2020 and February 2021. In the wavelet spectrum, the shaded regions signify the 
cone of influence. The color bar signifies the strength of power in the wavelet spectrum. Areas 
surrounded by the black polygons display significant powers (within 95% significance level). In 
the global wavelet spectrum, the red-dashed line is the 95% significance level using a red-noise 
background spectrum. The shaded area in the 30 cm depth of the lower marsh (bottom center 
panel) marks the time of a precipitation event studied in detail in Figure 5. 

Figure 4. Mutual information between Eh time series and other hydroclimatic parameters 
used to explore Eh’s temporal variability. All the relationships between Eh and the parameters 
shown in the figure are statistically significant (p-value <0.0001). The mutual information 
values are normalized by the Entropy of each individual signal. 

Figure 5. Multilevel decomposition of Eh for the 10 cm, 30 cm, and 50 cm depths in the 
lower marsh position between January 20th and February 10th, 2021 (marked in Figure 3 by a 
shaded rectangle). A) shows the Eh approximate coefficients at 16 h, hourly precipitation (P), 
and hourly evapotranspiration (ET). B) shows local subsurface water level, air temperature, 
water temperature, and regional terrestrial groundwater level. C) shows the detailed 
components of Eh at dyadic scales of 2 (d1), 4 (d2), 8 (d3), 16(d4), and 32 (d5). The shaded 
region marks a precipitation event that occurred in the area in late January. The dashed gray 
line in B) marks the elevation (amsl) of the salt marsh. The vertical dashed gray lines mark the 
beginning of every new day (midnight). 

Figure 6. Cross wavelet analysis of subsurface water level and Eh signals at the 30 cm 
depth in the lower marsh position. The figure shows the modulus (power) and phase (angle in 
radians) of the wavelet cross-spectrum in the top and bottom panels, respectively. The power 
plot indicates higher coherences with blue and green colors while low coherence is illustrated by 
gray colors. In the phase shift, the 0 radian value indicates that the two time series are in phase 
while +3 radians and -3 radians indicate anti-phase (Note that the color scale actually goes 
from -𝜋𝜋 to +𝜋𝜋). Arrows pointing towards the right indicate that the time series are in phase, 
arrows pointing to the left indicate that the two time series are anti-phase, arrows pointing 
downward explain that the subsurface water level is leading, and arrows pointing upward 
indicate that the subsurface water level is lagging. 
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